Pseudo Code Dev C++
Apr 30, 2016 'pseudo code' is just a logical description of the code. Include headers. Seed random number generator initialize variables LOOP ONE THOUSAND TIMES Randomly select prize door ( 1, 2 or 3) Randomly select first choice door ( 1, 2 or 3 ) Randomly switch choice door (switch / don't switch ) IF ( first choice is price door, AND didn't switch ). Dec 08, 2019 I used to help with a similar advertisement. The author of the topic prepared the system, but he lacked textures, in exchange for help he was supposed to share his system with people, but when he received textures from me, he never spoke again.
Pseudocode is an informal high-level description of the operating principle of a computer program or other algorithm. It uses the structural conventions of a normal programming language, but is intended for human reading rather than machine reading. Pseudocode typically omits details that are essential for machine understanding of the algorithm, such as variable declarations, system-specific code and some subroutines. The programming language is augmented with natural language description details, where convenient, or with compact mathematical notation. The purpose of using pseudocode is that it is easier for people to understand than conventional programming language code, and that it is an efficient and environment-independent description of the key principles of an algorithm. It is commonly used in textbooks and scientific publications that are documenting various algorithms, and also in planning of computer program development, for sketching out the structure of the program before the actual coding takes place.
No standard for pseudocode syntax exists, as a program in pseudocode is not an executable program. Pseudocode resembles skeleton programs which can be compiled without errors. Flowcharts, drakon-charts and Unified Modeling Language (UML) charts can be thought of as a graphical alternative to pseudocode, but are more spacious on paper. Languages such as HAGGIS bridge the gap between pseudocode and code written in programming languages.
Application[edit]
Textbooks and scientific publications related to computer science and numerical computation often use pseudocode in description of algorithms, so that all programmers can understand them, even if they do not all know the same programming languages. In textbooks, there is usually an accompanying introduction explaining the particular conventions in use. The level of detail of the pseudocode may in some cases approach that of formalized general-purpose languages.
A programmer who needs to implement a specific algorithm, especially an unfamiliar one, will often start with a pseudocode description, and then 'translate' that description into the target programming language and modify it to interact correctly with the rest of the program. Programmers may also start a project by sketching out the code in pseudocode on paper before writing it in its actual language, as a top-down structuring approach, with a process of steps to be followed as a refinement.
Syntax[edit]
Pseudocode generally does not actually obey the syntax rules of any particular language; there is no systematic standard form. Some writers borrow style and syntax from control structures from some conventional programming language, although this is discouraged.[1][2] Some syntax sources include Fortran, Pascal, BASIC, C, C++, Java, Lisp, and ALGOL. Variable declarations are typically omitted. Function calls and blocks of code, such as code contained within a loop, are often replaced by a one-line natural language sentence.
Depending on the writer, pseudocode may therefore vary widely in style, from a near-exact imitation of a real programming language at one extreme, to a description approaching formatted prose at the other.
This is an example of pseudocode (for the mathematical gamefizz buzz):
Fortran style pseudocode | Pascal style pseudocode | C style pseudocode: | Structured Basic style pseudocode |
Mathematical style pseudocode[edit]
In numerical computation, pseudocode often consists of mathematical notation, typically from set and matrix theory, mixed with the control structures of a conventional programming language, and perhaps also natural language descriptions. This is a compact and often informal notation that can be understood by a wide range of mathematically trained people, and is frequently used as a way to describe mathematical algorithms. For example, the sum operator (capital-sigma notation) or the product operator (capital-pi notation) may represent a for-loop and a selection structure in one expression:
Normally non-ASCIItypesetting is used for the mathematical equations, for example by means of markup languages, such as TeX or MathML, or proprietary formula editors.
Mathematical style pseudocode is sometimes referred to as pidgin code, for example pidgin ALGOL (the origin of the concept), pidgin Fortran, pidgin BASIC, pidgin Pascal, pidgin C, and pidgin Lisp.
Common mathematical symbols[edit]
Type of operation | Symbol | Example |
---|---|---|
Assignment | ← or := | c ← 2πr , c := 2πr |
Comparison | =, ≠, <, >, ≤, ≥ | |
Arithmetic | +, −, ×, /, mod | |
Floor/ceiling | ⌊, ⌋, ⌈, ⌉ | a ← ⌊b⌋ + ⌈c⌉ |
Logical | and, or | |
Sums, products | Σ Π | h ← Σa∈A 1/a |
Example[edit]
Here follows a longer example of mathematical-style pseudocode, for the Ford–Fulkerson algorithm:
Machine compilation of pseudocode style languages[edit]
Natural language grammar in programming languages[edit]
Various attempts to bring elements of natural language grammar into computer programming have produced programming languages such as HyperTalk, Lingo, AppleScript, SQL, Inform and to some extent Python. In these languages, parentheses and other special characters are replaced by prepositions, resulting in quite talkative code. These languages are typically dynamically typed, meaning that variable declarations and other boilerplate code can be omitted. Such languages may make it easier for a person without knowledge about the language to understand the code and perhaps also to learn the language. However, the similarity to natural language is usually more cosmetic than genuine. The syntax rules may be just as strict and formal as in conventional programming, and do not necessarily make development of the programs easier.
Mathematical programming languages[edit]
An alternative to using mathematical pseudocode (involving set theory notation or matrix operations) for documentation of algorithms is to use a formal mathematical programming language that is a mix of non-ASCII mathematical notation and program control structures. Then the code can be parsed and interpreted by a machine.
Several formal specification languages include set theory notation using special characters. Examples are:
- Vienna Development Method Specification Language (VDM-SL).
Some array programming languages include vectorized expressions and matrix operations as non-ASCII formulas, mixed with conventional control structures. Examples are:
- A programming language (APL), and its dialects APLX and A+.
- MathCAD.
See also[edit]
References[edit]
- ^Code Complete, page 54 'Avoid syntactic elements from the target programming language'.
- ^Invitation to Computer Science, 8th Edition by Schneider/Gersting, 'Keep statements language independent' as quoted at [1]
- Zobel, Justin (2013). 'Algorithms'. Writing for Computer Science (Second ed.). Springer. ISBN1-85233-802-4.
External links[edit]
Look up pseudocode in Wiktionary, the free dictionary. |
- Pseudocode Guidelines, PDF file.
- Pseudocode generation tool from a model tree learn how to generate pseudocode in a second
- Pseudocode interpreter PSEINT for Android-OS
The C++ expression parser supports all forms of C++ expression syntax. The syntax includes all data types (including pointers, floating-point numbers, and arrays) and all C++ unary and binary operators.
Numbers in C++ Expressions
Numbers in C++ expressions are interpreted as decimal numbers, unless you specify them in another manner. To specify a hexadecimal integer, add 0x before the number. To specify an octal integer, add 0 (zero) before the number.
The default debugger radix does not affect how you enter C++ expressions. You cannot directly enter a binary number (except by nesting a MASM expression within the C++ expression).
You can enter a hexadecimal 64-bit value in the xxxxxxxx`xxxxxxxx format. (You can also omit the grave accent ( ` ).) Both formats produce the same value.
You can use the L, U, and I64 suffixes with integer values. The actual size of the number that is created depends on the suffix and the number that you enter. For more information about this interpretation, see a C++ language reference.
The output of the C++ expression evaluator keeps the data type that the C++ expression rules specify. However, if you use this expression as an argument for a command, a cast is always made. For example, you do not have to cast integer values to pointers when they are used as addresses in command arguments. If the expression's value cannot be validly cast to an integer or a pointer, a syntax error occurs.
You can use the 0n (decimal) prefix for some output, but you cannot use it for C++ expression input.
Characters and Strings in C++ Expressions
You can enter a character by surrounding it with single quotation marks ( ' ). The standard C++ escape characters are permitted.
You can enter string literals by surrounding them with double quotation marks ( ' ). You can use ' as an escape sequence within such a string. However, strings have no meaning to the expression evaluator.
Symbols in C++ Expressions
In a C++ expression, each symbol is interpreted according to its type. Depending on what the symbol refers to, it might be interpreted as an integer, a data structure, a function pointer, or any other data type. If you use a symbol that does not correspond to a C++ data type (such as an unmodified module name) within a C++ expression, a syntax error occurs.
If the symbol might be ambiguous, you can add a module name and an exclamation point ( ! ) or only an exclamation point before the symbol. For more information about symbol recognition, see Symbol Syntax and Symbol Matching.
You can use a grave accent ( ` ) or an apostrophe ( ' ) in a symbol name only if you add a module name and exclamation point before the symbol name.
When you add the < and > delimiters after a template name, you can add spaces between these delimiters.
Operators in C++ Expressions
You can always use parentheses to override precedence rules.
If you enclose part of a C++ expression in parentheses and add two at signs (@@) before the expression, the expression is interpreted according to MASM expression rules. You cannot add a space between the two at signs and the opening parenthesis. The final value of this expression is passed to the C++ expression evaluator as a ULONG64 value. You can also specify the expression evaluator by using @@c++( .. ) or @@masm( .. ).
Data types are indicated as usual in the C++ language. The symbols that indicate arrays ( [ ] ), pointer members ( -> ), UDT members ( . ), and members of classes ( :: ) are all recognized. All arithmetic operators are supported, including assignment and side-effect operators. However, you cannot use the new, delete, and throw operators, and you cannot actually call a function.
Pointer arithmetic is supported and offsets are scaled correctly. Note that you cannot add an offset to a function pointer. (If you have to add an offset to a function pointer, cast the offset to a character pointer first.)
As in C++, if you use operators with invalid data types, a syntax error occurs. The debugger's C++ expression parser uses slightly more relaxed rules than most C++ compilers, but all major rules are enforced. For example, you cannot shift a non-integer value.
You can use the following operators. The operators in each cell take precedence over those in lower cells. Operators in the same cell are of the same precedence and are parsed from left to right. As with C++, expression evaluation ends when its value is known. This ending enables you to effectively use expressions such as ?? myPtr && *myPtr.
Operator | Meaning |
---|---|
Expression//Comment | Ignore all subsequent text |
Class::Member Class::~Member ::Name | Member of class Member of class (destructor) Global |
Structure.Field Pointer->Field Name[integer] LValue++ LValue-- Download native instrument drummer vst. dynamic_cast <type>(Value) static_cast <type>(Value) reinterpret_cast <type>(Value) const_cast <type>(Value) | Field in a structure Field in referenced structure Array subscript Increment (after evaluation) Decrement (after evaluation) Typecast (always performed) Typecast (always performed) Typecast (always performed) Typecast (always performed) |
(type)Value sizeofvalue sizeof(type) ++LValue --LValue ~Value !Value Value +Value &LValue Value | Typecast (always performed) Size of expression Size of data type Increment (before evaluation) Decrement (before evaluation) Bit complement Not (Boolean) Unary minus Unary plus Address of data type Dereference |
Structure. Pointer Pointer-> *Pointer | Pointer to member of structure Pointer to member of referenced structure |
ValueValue Value/Value Value%Value | Multiplication Division Modulus |
Value+Value Value-Value | Addition Subtraction |
Value<<Value Value>>Value | Bitwise shift left Bitwise shift right |
Value<Value Value<=Value Value>Value Value>=Value | Less than (comparison) Less than or equal (comparison) Greater than (comparison) Greater than or equal (comparison) |
ValueValue Value!=Value | Equal (comparison) Not equal (comparison) |
Value&Value | Bitwise AND |
Value^Value | Bitwise XOR (exclusive OR) |
ValueValue | Bitwise OR |
Value&&Value | Logical AND |
ValueValue | Logical OR |
LValue=Value LValue*=Value LValue/=Value LValue%=Value LValue+=Value LValue-=Value LValue<<=Value LValue>>=Value LValue&=Value LValue =Value LValue^=Value | Assign Multiply and assign Divide and assign Modulo and assign Add and assign Subtract and assign Shift left and assign Shift right and assign AND and assign OR and assign XOR and assign TRAKTOR PRO 3 lets you mix across four channels, with a full effects suite, including new one-touch Mixer FX and over 40 Deck FX. You can also make use of extended cueing options, sampling, and performance tools such as Remix Decks and Stem Decks, as well as easily record your mixes within TRAKTOR.To explore everything TRAKTOR PRO 3 has to offer, you can try it out for 30 minutes at a time with our free demo version. TRAKTOR LE 3 uses the same workflows and powerful audio engine as our flagship DJ software, used in clubs around the world. |
Value?Value:Value | Conditional evaluation |
Value,Value | Evaluate all values, and then discard all except the rightmost value |
Registers and Pseudo-Registers in C++ Expressions
Dev C++ Code Examples
You can use registers and pseudo-registers within C++ expressions. You must add an at sign ( @ ) before the register or pseudo-register.
The expression evaluator automatically performs the proper cast. Actual registers and integer-value pseudo-registers are cast to ULONG64. All addresses are cast to PUCHAR, $thread is cast to ETHREAD*, $proc is cast to EPROCESS*, $teb is cast to TEB*, and $peb is cast to PEB*.
You cannot change a register or pseudo-register by an assignment or side-effect operator. You must use the r (Registers) command to change these values.
For more information about registers and pseudo-registers, see Register Syntax and Pseudo-Register Syntax.
Macros in C++ Expressions
Pseudo Code Writer
You can use macros within C++ expressions. You must add a number sign (#) before the macros.
You can use the following macros. These macros have the same definitions as the Microsoft Windows macros with the same name. (The Windows macros are defined in Winnt.h.)
Pseudo Code Format
Macro | Return Value |
---|---|
#CONTAINING_RECORD(Address, Type, Field) | Returns the base address of an instance of a structure, given the type of the structure and the address of a field within the structure. |
#FIELD_OFFSET(Type, Field) | Returns the byte offset of a named field in a known structure type. |
#RTL_CONTAINS_FIELD (Struct, Size, Field) | Indicates whether the given byte size includes the desired field. |
#RTL_FIELD_SIZE(Type, Field) | Returns the size of a field in a structure of known type, without requiring the type of the field. |
#RTL_NUMBER_OF(Array) | Returns the number of elements in a statically sized array. |
#RTL_SIZEOF_THROUGH_FIELD(Type, Field) | Returns the size of a structure of known type, up through and including a specified field. |